Estimates of Landslide Numbers as a Function of Accumulated Precipitation Using Linear Regression Models
DOI:
https://doi.org/10.11137/1982-3908_2025_48_59636Keywords:
Landslide prediction, Covariate interaction models, Rainfall intensity-duration productAbstract
This study develops linear regression models incorporating covariate interaction terms to estimate landslide frequency as a function of cumulative precipitation in Rio de Janeiro, Brazil, under varying temporal distributions of landslides during critical rainfall episodes. Leveraging landslide inventories and high-resolution precipitation data (2000–2005) from the Alerta-Rio monitoring system, the models were calibrated using pluviometric predictors, including hourly intensity, 24-hour cumulative rainfall (R24), and 96-hour cumulative rainfall (R96). A non-linear interaction term, termed rainfall power (defined as the product of hourly rainfall intensity and R24), was introduced to capture intensity-duration dependencies. Results demonstrated significant explanatory power, with coefficients of determination (R2) exceeding 50% across models. The rainfall power-integrated model achieved high performance (R2>90%; p<0.001), underscoring the critical role of non-linear hydro-meteorological interactions in landslide triggering mechanisms. While linear frameworks provided a baseline for risk estimation, residual analysis revealed systematic biases in scenarios with high precipitation variability, necessitating advanced non-linear methodologies (e.g., Poisson regression or generalized linear models with log-link functions). These findings highlight the potential of covariance-driven regression for operational nowcasting systems, enabling real-time landslide risk quantification. However, model generalizability remains constrained by the omission of geo-environmental covariates (e.g., soil saturation thresholds, slope stability indices). Future work should prioritize multi-hazard validation using post-2005 extreme events and integrate geospatial data layers to refine spatial-explicit risk forecasts. This approach bridges empirical rainfall-landslide correlations with scalable early-warning frameworks, advancing disaster preparedness in tropical urban environments.
Downloads
References
Andrade, K.M. & Pinheiro, H.R. 2012, ‘Análise sinótica e simulação numérica de um evento extremo de chuva sobre o litoral de São Paulo e do Rio de Janeiro em dezembro de 2011’. Proceedings of XVII Congresso Brasileiro de Meteorologia, Gramado, RS, Brazil.
Andrade, K.M., Pinheiro, H.R. & Neto, G.D. 2015, ‘Evento extremo de chuva no Rio de Janeiro: análise sinótica, previsão numérica e comparação com eventos anteriores’, Ciência e Natura, vol. 37, n. 1, pp. 175-180.
Andreoni, R.V. & Kayano, M.T. 2005, ‘ENSO‐related rainfall anomalies in South America and associated circulation features during warm and cold Pacific decadal oscillation regimes’, International Journal of Climatology, vol. 25, pp. 2017-2030.
Cambra, M.F.E.S. & Coelho Netto, A.L.C. 1997, ‘A cidade do Rio de Janeiro e as chuvas de março/93: (des)organização urbana e inundações’, Anuário do Instituto de Geociências, v. 20, p. 55-74, DOI:10.11137/1997_0_55-74. https://doi.org/10.11137/1997_0_55-74
Dereczynski, C.P., Oliveira, J.S. & Machado, C.O. 2009, ‘Climatologia da precipitação no município do Rio de Janeiro’, Revista Brasileira de Meteorologia, vol. 24, n. 1, pp. 24-38, DOI:10.1590/S0102-77862009000100003. https://doi.org/10.1590/S0102-77862009000100003
Dereczynski, C.P., Calado, R.N. & Barros, A.B. 2017, ‘Chuvas Extremas no Município do Rio de Janeiro: Histórico a partir do Século XIX’, Anuário do Instituto de Geociências, vol. 40, n. 2, pp. 17-30, DOI:10.11137/2017_2_17_30. https://doi.org/10.11137/2017_2_17_30
De Blasio, F.V. 2011, Introduction to the physics of landslides: lecture notes on the dynamics of mass wasting, Springer Science & Business Media.
D’Orsi, R.N. 2016, ‘Lecture about Fundação GeoRio’, AlertaRio System of the Municipality of Rio de Janeiro-RJ, Brazil.
D’Orsi, R.N., Feijo, L. & Paes, N.M. 2002, ‘Relatório de Escorregamentos’, Fundação Geo-Rio, Rio de Janeiro, RJ, Brazil, 58 p.
D’Orsi, R.N., Feijo, L. & Paes, N.M. 2004, ‘2,500 operational days of Alerta Rio system: history and technical improvements of Rio de Janeiro Warning System for severe weather’, in W., Lacerda, M.,
Ehrlich, S.A.B., Fontoura & A.S.F., Sayao (eds), Landslides: Evaluation and Stabilization, Taylor & Francis Group, London.
Escobar, G.C.J., Marques, A.C.A. & Dereczynski, C.P. 2022, ‘Synoptic patterns of South Atlantic Convergence Zone episodes associated with heavy rainfall events in the city of Rio de Janeiro, Brazil’, Atmósfera, vol. 35, no. 2, pp. 287-305, DOI:10.20937/atm.52942. https://doi.org/10.20937/atm.52942
Felsberg, A., Poesen, J., Bechtold, M., Vanmaercke, M. & De Lannoy, G.J. 2022, ‘Estimating global landslide susceptibility and its uncertainty through ensemble modeling’, Natural Hazards and Earth System Sciences, vol. 22, no. 9, pp. 3063-3082.
Guidicini, G. & Iwasa, O.Y. 1977, ‘Tentative correlation between rainfall and landslides in a humid tropical environment’, Bulletin of the International Association of Engineering Geology, vol. 16, pp. 13-20.
Guidicini, G. & Iwasa, O.Y. 1976, ‘Ensaio de Correlação entre Pluviometria e Deslizamentos em Meio Tropical Úmido’. Procedings of Landslides and other Mass Moviment, IAEG, 1977, Praga.
Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M. & Galli, M. 2006, ‘Estimating the quality of landslide susceptibility models’, Geomorphology, vol. 81, n. 1-2, pp. 166-184.
Haight, F. A. 1967, Handbook of the Poisson Distribution, John Wiley & Sons, New York, NY, USA.
Harting, C. 2010, Rainfall as an Energy Source, submitted as Coursework for Physics-240, Stanford University.
IBGE (Instituto Brasileiro de Geografia e Estatística), 2020. Viewed 01 Dez. 2020, 2020, http://www.ibge.gov.br/.
Khan, S., Kirschbaum, D.B., Stanley, T.A., Amatya, P.M. & Emberson, R.A. 2022, ‘Global landslide forecasting system for hazard assessment and situational awareness’, Frontiers in Earth Science, vol. 10, pp. 878996.
Liao, C.M., Huang, T.L., Lin, Y.J., You, S.H., Cheng, Y.H., Hsieh, N.H. & Chen, W.Y. 2015, ‘Regional response of dengue fever epidemics to interannual variation and related climate variability’, Stochastic Environmental Research and Risk Assessment, vol. 29, pp. 947-958.
Machado, J.P., Miranda, G.S.B., Gozzo, L.F. & Custódio, M.D.S. 2020, ‘Condições atmosféricas associadas a eventos de ressaca no litoral sul e do sudeste do Brasil durante o El Niño 2015/2016’, Revista Brasileira de Meteorologia, vol. 34, pp. 529-544.
Mineo, C., Ridolfi, E., Moccia, B., Russo, F. & Napolitano, F. 2019, ‘Assessment of rainfall kinetic-energy-intensity relationships’, Water, vol. 11, n. 10, pp.1994.
Petru, J., & Kalibová, J. 2018, ‘Measurement and computation of kinetic energy of simulated rainfall in comparison with natural rainfall’, Soil and Water Research, vol. 13, n. 4, pp. 226-233.
Reboita, M.S., da Rocha, R.P., Dias, C.G. & Ynoue, R.Y. 2014, ‘Climate projections for South America: RegCM3 driven by HadCM3 and ECHAM5’, Advances in Meteorology, pp.1-17.
Reboita, M.S., Rodrigues, M., Silva, L.F. & Alves, M.A. 2015, ‘Aspectos climáticos do estado de Minas Gerais’, Revista Brasileira de Climatologia, vol. 17, p. 206-226.
Salviano, M.F., Groppo, J.D. & Pellegrino, G.Q. 2016, ‘Análise de tendências em dados de precipitação e temperatura no Brasil’, Revista Brasileira de Meteorologia, vol. 31, pp. 64-73.
Serio, M.A., Carollo, F.G. & Ferro, V. 2019, ‘A method for evaluating rainfall kinetic power by a characteristic drop diameter’, Journal of Hydrology, vol. 577, pp.123996.
Shin, S.S., Park, S.D. & Choi, B.K. 2016, ‘Universal power law for relationship between rainfall kinetic energy and rainfall intensity’, Advances in Meteorology, vol. 2016, pp.1-11.
Silva, L. 2014. ‘Caracterização climatológica e mudanças climáticas no Estado do Rio de Janeiro’, Master dissertation, Universidade Federal do Rio de Janeiro, Rio de Janeiro/RJ.
Sousa, F.B.B. & Karam, H.A. 2014, ‘Análise da Estrutura Termodinâmica Associada ao Desenvolvimento de Tempestade Ocorrida entre 17 e 18 de março de 2013 no Estado do Rio de Janeiro, Brasil’, Anuário do Instituto de Geociências, vol. 37, pp. 17-26.
Tatizana, C., Ogura, A.T., Cerri, L.D.S. & Rocha, M.D. 1987a, ‘October. Análise de correlação entre chuvas e escorregamentos-Serra do Mar, município de Cubatão’. Proceedings of Congresso Brasileiro de Geologia de Engenharia, vol. 5, pp. 225-236.
Tatizana, C.E.L.S.O., Ogura, A.T., Cerri, L.E. & Rocha, M.D. 1987b, ‘Modelamento numérico da análise de correlação entre chuvas e escorregamentos aplicado às encostas da Serra do Mar no município de Cubatão’. Proceedings of the Congresso Brasileiro de Geologia de Engenharia, vol. 5, pp. 237-248.
Tomás, L.R., Soares, G.G., Jorge, A.A., Mendes, J.F., Freitas, V.L. & Santos, L.B. 2022, ‘Flood risk map from hydrological and mobility data: A case study in São Paulo (Brazil)’, Transactions in GIS, vol. 26, n. 5, pp. 2341-2365.
Van, L.N., Le, X.H., Nguyen, G.V., Yeon, M., May, D.T.T. & Lee, G. 2022, ‘Comprehensive relationships between kinetic energy and rainfall intensity based on precipitation measurements from an OTT Parsivel2 optical disdrometer’, Frontiers in Environmental Science, vol. 10, pp. 985516.
Veyret, Y. 2004, Géographie des risques naturels en France, Hatier, Paris, ISBN 0750-2516.
WGNE/WWRP. 2017, Forecast Verification methods Across Time and Space Scales (site). Joint Working Group on Forecast Verification Research, WWRP. Proceedings of the 7th International Verification Methods Workshop. Berlin, Science Conference.
Wilks, D. S. 2006, Statistic Methods in the Atmospheric Sciences, Elsevier, 627 pp.
Young, C.E.F., Aguiar, C. & Possas, E. 2014, ‘Perdas econômicas dos desastres climáticos no estado do Rio de Janeiro, 2001-2010’, Cadernos do Desenvolvimento Fluminense, vol. 5, pp. 19-30.
Zandler, H., Haag, I. & Samimi, C. 2019, ‘Evaluation needs and temporal performance differences of gridded precipitation products in peripheral mountain regions’, Scientific reports, vol. 9, n. 1, pp. 15118.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Anuário do Instituto de Geociências

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal is licensed under a Creative Commons — Attribution 4.0 International — CC BY 4.0, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.











