O Problema das Duas Médias Proporcionais
Descartes entre Mydorge e Roberval (1625-1637)
DOI:
https://doi.org/10.35920/1414-3004.2021v26n1p122-146Keywords:
Duas Médias Proporcionais, Geometria, Descartes, Mydorge, Roberval, Mersenne, Two Mean ProportionalsAbstract
Resumo
O presente texto tem dois objetivos. Primeiro, o de reconstruir as lacunas do desenvolvimento histórico do problema das duas médias proporcionais tal como foi investigado por Descartes e outros matemáticos de seu círculo (Mersenne, Beeckman, Mydorge e Roberval, nomeadamente) antes da publicação d’A Geometria (isto é: o período entre 1625-1637), acompanhado da tradução das demonstrações que foram o resultado dessa interação. Em segundo, o de extrair alguns elementos que justifiquem as preferências demonstrativas de Descartes a partir de uma comparação de sua demonstração com as de Mydorge e Roberval.
Palavras-chave: duas médias proporcionais; geometria; Descartes; Mydorge; Roberval; Mersenne.
Abstract
This paper has two aims. First, I fill the lacunae in the historical development of the problem of the two mean proportional as investigated by Descartes and other mathematicians of his circle (namely Mersenne, Beeckman, Mydorge, and Roberval) before the publication of The Geometry (i. e.: the period between 1625-1637), accompanied by the translation of the demonstrations that were the result of the interaction between them. Secondly, I draw some elements that justify Descartes’s demonstrative preferences from a comparison of his demonstration with those of Mydorge and Roberval.
Keywords: two mean proportionals; geometry; Descartes; Mydorge; Roberval; Mersenne.
Downloads
References
Fontes primárias:
ARQUIMEDES. The Works of Archimedes. Tradução: Thomas Heath. Cambridge: Cambridge University Press, 1897.
BEECKMAN, Isaac. Journal de 1604 à 1634. Tome 4: Supplément, (ed.) Cornelis de Waard, La Haye: M. Nijhoff, 1953, pp. 136-138. Disponível em <https://www.dbnl.org/tekst/beec002jour04_01/beec002jour04_01_0037.php#1154>. Acesso em: 28 de março de 2021.
DESCARTES, René. Oeuvres De Descartes, 11 vols., (ed.) Charles Adam e Paul Tannery, Paris: Librairie Philosophique J. Vrin, 1983.
DESCARTES, René. Oeuvres complètes t.1. Premiers écrits et Règles pour la direction de l'esprit. Paris: Gallimard, 2016.
EUCLIDES. Os Elementos. Tradução: Irineu Bicudo. São Paulo: Unesp, 2009.
HARDY, Claude. Examen de la duplication du cube, et quadrature du cercle. Paris: Robert Sara, 1630.
MERSENNE, Marin de. Correspondance du P. Marin Mersenne religieux Minime, Vol. I, 1617-1627, (ed.) Cornelis de Waard, Paul Tannery, A. Beaulieu, et alii, Paris: CNRS Éditions, 1945.
MERSENNE, Marin de. La vérité des sciences contre les septiques ou Pyrrhoniens. Paris: Toussaint Du Bray, 1625.
MERSENNE, Marin de. Harmonicorum Libri, in quibus agitur desonorum natura, causis et effectibus. Paris: Guillaume Baudry, 1636.
MERSENNE, Marin de. Harmonie universelle contenant la théorie et la pratique de la musique. Paris: Pierre I Ballard, 1637.
MYDORGE, Claude. Prodromi catoptricorum et dioptricorum. Paris: J. Dedin, 1631.
YVON, Paul. Quadrature du cercle. La Rochelle: Jérôme Haultin, 1619.
Fontes secundárias:
BOS, H. J. M. Redefinig Geometrical Exactness – Descartes’ Transformation of the Early Modern Concept of Construction. New York: Springer Verlag, 2001.
COSTABEL, Pierre. Démarches originales de Descartes Savant. Paris: Librairie Philosophique J. Vrin, 1982.
CRIPPA, Davide. Impossibility results: from geometry to analysis. A study in early modern conceptions of impossibility. Tese (Doutorado em Filosofia). Universidade Paris Diderot (Paris VII), 2014.
LÜTZEN, Jesper. The Algebra of Geometric Impossibility: Descartes and Montucla on the Impossibility of the Duplication of the Cube and the Trisection of the Angle. In: Centaurus, 52:4–37, 2010.
MANDERS, Kenneth. Euclides or Descartes? Representation or Responsiveness. Não publicado.
MAIERÙ, Luigi. Le sezioni coniche nel Seicento. Soveria Mannelli: Rubbettino Editore, 2009.
RABOUIN, David. Les mathématiques de Descartes avant la Géométrie. In: THIBAUT, Gress. Cheminer avec Descartes. Concevoir, raisonner,comprendre, admirer et sentir. Paris: Classiques Garnier, p. 293–311, 2018.
SAITO, Ken. Book II of Euclid’s Elements in the Light of the Theory of Conic Sections. In: Historia Scientiarum. 28:31-60. 1985.
SASAKI, Chikara. Descartes’ Mathematical Thought. Holanda: Kluwer Academic, 2003.
SERFATI, Michel. De la méthode: recherches en histoire et philosophie des mathématiques. Besançon: Presses universitaires franc-comtoises, 2002.
SHEA, William. La magia de los números y el movimiento – La carrera científica de Descartes. Madrid: Alianza Universidad, 1993.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Apaoan Ramos Machado

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Analytica. Journal of Philosophy is an open-access scientific journal licensed under the Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license. This means that its content can be copied and redistributed in any medium or format for any purpose provided the following requirements are met: proper credit is given, a link to the license is provided, and it is indicated if any changes were made. Legal terms or technological measures that restrict others from exercising rights granted by the license shall not be applied. In the case of any transformation or adaptation of the content, the new material cannot be distributed.
This statement aligns with the Budapest Open Access Initiative (BOAI) definition of open access.